Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells.
نویسندگان
چکیده
Neural cell development is regulated by membrane ion channel activity. We have previously demonstrated that cell membrane depolarization with veratridine or blockage of K+ channels with tetraethylammonium (TEA) inhibit oligodendrocyte progenitor (OP) proliferation and differentiation (); however the molecular events involved are largely unknown. Here we show that forskolin (FSK) and its derivative dideoxyforskolin (DFSK) block K+ channels in OPs and inhibit cell proliferation. The antiproliferative effects of TEA, FSK, DFSK, and veratridine were attributable to OP cell cycle arrest in G1 phase. In fact, (1) cyclin D accumulation in synchronized OP cells was not affected by K+ channel blockers or veratridine; (2) these agents prevented OP cell proliferation only if present during G1 phase; and (3) G1 blockers, such as rapamycin and deferoxamine, mimicked the anti-proliferative effects of K+ channel blockers. DFSK also prevented OP differentiation, whereas FSK had no effect. Blockage of K+ channels and membrane depolarization also caused accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in OP cells. The antiproliferative effects of K+ channel blockers and veratridine were still present in OP cells isolated from INK4a-/- mice, lacking the cyclin-dependent kinase inhibitors p16(INK4a) and p19(ARF). Our results demonstrate that blockage of K+ channels and cell depolarization induce G1 arrest in the OP cell cycle through a mechanism that may involve p27(Kip1) and p21(CIP1) and further support the conclusion that OP cell cycle arrest and differentiation are two uncoupled events.
منابع مشابه
Neurotransmitter receptor activation triggers p27(Kip1 )and p21(CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte progenitors.
We examined the pathways that link neurotransmitter receptor activation and cell cycle arrest in oligodendrocyte progenitors. We had previously demonstrated that glutamate receptor activation inhibits oligodendrocyte progenitor proliferation and lineage progression. Here, using purified oligodendrocyte progenitors and cerebellar slice cultures, we show that norepinephrine and the beta-adrenergi...
متن کاملThe cyclin-dependent kinase inhibitors p27Kip1 and p21Cip1 cooperate to restrict proliferative life span in differentiating ovarian cells.
The timing of cellular exit from the cell cycle during differentiation is specific for each cell type or lineage. Granulosa cells in the ovary establish quiescence within several hours after the ovulation-inducing luteinizing hormone surge, whereas they undergo differentiation into corpora lutea. The expression of Cdk inhibitors p21(Cip1/Waf1) and p27(Kip1) is up-regulated during this process, ...
متن کاملCyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors.
The D-type cyclins and their major kinase partners CDK4 and CDK6 regulate G0-G1-S progression by contributing to the phosphorylation and inactivation of the retinoblastoma gene product, pRB. Assembly of active cyclin D-CDK complexes in response to mitogenic signals is negatively regulated by INK4 family members. Here we show that although all four INK4 proteins associate with CDK4 and CDK6 in v...
متن کاملCell cycle exit during terminal erythroid differentiation is associated with accumulation of p27(Kip1) and inactivation of cdk2 kinase.
Progression through the mammalian cell cycle is regulated by cyclins, cyclin- dependent kinases (CDKs), and cyclin-dependent kinase inhibitors (CKIs). The function of these proteins in the irreversible growth arrest associated with terminally differentiated cells is largely unknown. The function of Cip/Kip proteins p21(Cip1) and p27(Kip1) during erythropoietin-induced terminal differentiation o...
متن کاملEfficient down-regulation of cyclin A-associated activity and expression in suspended primary keratinocytes requires p21(Cip1).
When suspended in methylcellulose, primary mouse keratinocytes cease proliferation and differentiate. Suspension also reduces the activity of the cyclin-dependent kinase cdk2, an important cell cycle regulatory enzyme. To determine how suspension modulates these events, we examined its effects on wild-type keratinocytes and keratinocytes nullizygous for the cdk2 inhibitor p21(Cip1). After suspe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 13 شماره
صفحات -
تاریخ انتشار 1999